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I. INTRODUCTION 

The technique of using the renormalization group1 and the Wilson 

e-expansion2 to derive scaling properties of proper vertices in Reggeon 

field theory3 was introduced by Migdal, Polyakov and Ter-Martirosyan,4 

and by Abarbanel and Bronzan. 5,6 In their work the behavior of the 

proper vertices in the infrared limit j = 1 and t - 0 was examined, 

and a number of conclusions was reached. The most important of these 

was a prediction that in a theory with a linear unrenormalized Pomeron 

trajectory and a triple-Pomeron coupling, the asymptotic behavior of the 

elastic amplitude is 

T(s, t) = s(ln s)-’ F[t(h s)‘l j (1) 

with y < 0 . This behavior arises from the coincidence at j = 1 and 

t = 0 of an infinite number of branch points. The scaling exponent y 

specifies the logarithmic rise of the total cross section 

c+- (lns)-Y , (2) 

and the exponent z specifies the trajectories of Pomeron cuts and pole 

for small t : 

a(t) = 1 + const(t) ilz 
. (3) 

The exponents y and z can be determined in an E- expansion, 

where E = 4-D is the difference between the natural scaling dimension 
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(=4) and the number of transverse dimensions D : we want answers for 

E = 2 Although E is large, it was shown 
4-6 that to order E , 

E 1 
-y=12=x’ 

2=1+L=22 
24 12 ’ If E were always accompanied by a 

factor like i/12 , a few terms in the e-expansion would give good results 

for y and z . We have determined that 
7 

-++ +qn;+37 ( f.2 
241(12) + o(c’) ’ 

(4) 

z=i+L+ 155 
24 

24 In:+%) (&)‘+ 0(e3J . 

Since the coefficients of the (~112)~ terms are about 7.7 and 3.5, 

respectively, the O(e2) terms are larger than the O(E) terms at E = 2 . 

It would therefore seem that the e-expansion is a questionable means of 

calculating y and z at E = 2 Our results agree with those obtained 

independently by M. Baker. 
8 

In Sec. II we review the Reggeon field theory and obtain the basic 

formulas from which y and z can be calculated. In Sec. III we 

ennumerate the required perturbation theory graphs and obtain Eq. (4). 

Integrals are evaluated in the Appendix. 

II. REGGEON FIELD THEORY AND THE RENORMALIZATION GROUP 

6 
We begin our discussion with a review of the Reggeon field theory. 

We define a free Lagrangian 
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~++-&2;“~.0~ 

-a,$+$ . (5) 

Here JI = $(g, t) is the unrenormalized Reggeon field, written as 

a function of x’ , a D-dimensional space vector conjugate to the D- 

dimensional transverse momentum vector c , and t , a variable 

conjugate to E : 1 - j . The equation of motion corresponding to y. 

yields 

-2 E = cu*k + A 
0 0 (6) 

Defining A0 = 1 - czo as a bare “energy gap” then leads to the linear 

unrenormalized trajectory (t = -g2) 

j=ao+w’t . 
0 (7) 

We choose A, = 0 , corresponding to no = 1 for the Pomeron. No 

mass counter-term is required to keep (Y = 1 in the presence of 

interactions within the e-expansion. 

The interaction we choose is the triple-Pomeron coupling with 

non-zero bare coupling ir 0 . The factor i is dictated by signature 

factors of the even signature Pomeron? It is sufficient to retain only 

the triple-Pomeron coupling because it induces higher couplings or 
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proper vertices. According to Kogut and Wilson, 2 the scaling behavior 

(and exponents) is independent of the bare couplings we retain in the 

theory. In general, there, scaling is the same in our one coupling 

theory (with a triple-Pomeron coupling) as it would be in a theory with 

other bare couplings in addition. 

We write our full Lagrangian as 

(Ic;‘$’ + h. c.) . 

As in Ref. 6, we define dimensions for our theory by 

and 

We find 

[ x] = k-i , 

[t] =E-l , 

[j-dDx d&j: 1 . 

[$j =kD’2 , 

[a,‘] = Ek-2 , 

IAol= E > 

and 

[r,] =Ek-D’2 . 

(8) 

(9) 

(10) 

The Greenrs functions for n incoming and m outgoing Reggeons 

are defined as 
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G( Wrn) ( $ti:$Tj ) =G ff CO, T&;j,rj)+(+i), O> . (12) 
i-i j=i 

The tirier transform of the Green’s function is defined by 

6(-j+) bD(xk)G(n’m) (E&) 

i(Eiti-c; Ti)” 

II d 

D 

j=i 
yjdT j 

e 
-i (Ejr j-gj.Fj) 

G( n,m) - (xi,t&.rj) . (13) 

The 6 functions conserve overall energy and momentum in the 

Green’s functions. The Feynman rules for G tn. m) (Ei,ci) are the same 

as those listed in Ref. 6. They are: 

1. Draw all topologically distinct graphs with arrows indicating 

the direction of propagation. 

2. dDq dEq around each loop. 
D+i 

3. Each vertex: r,/(ZT)T . 

4. Each Reggeon propagator is the retarded “non-relativistic” 

expression 

Gr’ ‘)(E, c) = i/[ E-a0 c2-Ao+ir ] . (14) 

5. Factor + for closed loops with Reggeon loops having momenta 

in the same direction. 
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The unrenormalized connected proper vertex functions I-( n, m) 

are now defined by taking off the external legs of the connected part of 

G( n, m) . We write 

n+m 
I?( 1 

-1 
n’ m)(Ei, gi) =i ’ ‘)(El , i$) 

P =1 

XG @a m)(Ei, gi) . 
C 

(4.5) 

The vertex functions I-( n,m) also depend on the unrenormalized 

parameters a0 and r. . We shall use dimensional regularization to 

define the integrals, as in Ref. 6. The renormalized proper vertex 

functions rR(Ei, $2 @ ’ > r,EN) depend on the renormalized slope (Y* , 

the renormalized coupling r , and a normalization point EN . E = -EN 

is chosen as a point at which to define the coupling r and the slope (Y’ 

through conditions on the appropriate vertex functions lYR . Normalization 

is imposed away from the perturbative singularities of the calculus, i. e. , 

EN>O. Hence r and (Y’ are functions of E N . 
A variation of EN 

involves a finite renormalization and thus a change in r , in cr. , and 

in r 
R’ 

The connection between rR and I? is 

n+m 

rRpi, $a*, r,EN) = Z 2 r(Ei, ci, nO’, ro, Ao) . (16) 

The wave function renormalization Z is a function of cyi , r. , and 
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The normalization conditions on rR 
are, then 

r(f, 1) 
R 

(E,c2) = 0 , 

E=O 

2 ir(*’ ‘)(E, c2) 
ax3 R 

=1 , 
E=-E 

i;2=0 
N 

a (1,1) 
- lr 
ai;’ R 

(E, iT2, = -@‘(EN) , 

1 E=-EN 

g2,0 

rR (” ‘)(Ei. ci) 
r(EN) 

= 
Dfl 

El=-EN= 2E2,3 @*)T 

(47) 

(18) 

( 19) 

(20) 

In the weak coupling limit, r + ro, cy* - (~0’ . 

It is convenient to define dimensionless couplings gO(EN) and 

&EN) by 

&EN) = 
(D/4)-1 

rD,4 EN . 
b’) 

We should note at this point that we could have multiplied these definitions 
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by an arbitrary function of D . This freedom will play a role in 

some of our considerations later. 7 

h m). The renormalization group equation for l? R is. obtained by 

noting that l? (n,m) does not depend upon EN, so that its derivative with 

respect to EN is zero. Using Eq. (16) and the chain rule, 

1 
Xr (n’m) (Ei,$g.CEN) = 0 . 

R (22) 

We have substituted in our dimensionless coupling g . Here, 

the coefficients in Eq. (22) are 

v(g) = EN & 
N 

In Zb;, roBEN) 

(Y;, r. fixed 

5 (Q’ ,g) =E a 
N aEN a’WN) 

‘r fixed &O’ 0 

(23) 

(24) 

PM = EN+ &EN) (25) 
N 

(Y;, r. fixed 

As in Ref. 6 we now use the dimensional analysis representation 

tn. m) for rR which is defined by the statement that 

D + [ 1 
(26) 

It is 



rR 
(& m)(Ei, i$, g, Q’, EN) = 

Using this we obtain the equation’ 

I 5% - P(a)g+[o=bw,g)]$7 

+ Y(P) - 1 Ii b, m) 
rR (SEi,r;>g,CEN) = 0 . 

(27) 

(28) 

Here, c =et 1s a scaling parameter whose value we are at liberty 

to choose. It has been introduced in place of the explicit EN dependence 

through the dimensional analysis representation. (This t is not that in Eq. 9. ) 

The solution of Eq. (28) is then 

en m, (cEi, ci, g, (Y’ , EN) 

= I’r’m)(Ei, i-$ E C-t), 5’ (-t).EN] 

YE( > 
t 

where 

dg(t) = -p[ g(t)] , FE- 

dZ ’ (t) - = z’(t) - 5 ~‘(t).%(t)] 
dt 

I 

(2% 

(30) 

(31) 



and 

Z(O) = g , (32) 

Z’(0) = CY’ . (33) 

b. 4 Scaling expressions for rR are obtained by examining the solution 

0fEq. (29)as c-0 or t-,-m . In this limit, Et-t, goes to gf , 

the Gell-Mann-Low zero, where p(g,) = 0 and p’(g,)> 0 . We find’ 

X 

Here C and C are constants, 
Y w’ 

E is any linear combination of 

the Ei Is , and 

z(g,) = 1 - 
56 s 9,) 

TN J (35) 

z(g,) and ~(8~) are the exponents z and y in Eq. (4). 

The key to the e-expansion calculation of z and y is that gf 

is O(E) . Therefore the perturbation expansion of p, y and 5 

becomes the e-expansion. To obtain Eq. (4) we must calculate r (13 1) 

and l?(i’2) to order gi and go5 , respectively. Using Eqs. (16)-(25) 

the renormalization can be carried out to get 5 /a’ and y to order 

g4 > and (3 to order g5 . From these expressions g’,,, z and y 
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are obtained to O(e2) . 

III. THE SCALING EXPONENTS TO ORDER c2 

We begin by calculating $f, 1) to order gz and lY(l’ 2, to 

order gz . 

The O(g$ contributions to + 1,i) are illustrated in Fig. 1. 

Using the Feynman rules of Sec. II, and integrating over El and E2 

by Cauchy’s theorem, we obtain 

-ir 4 
r(a+~N,c2) = ..-+ dDkldDk 2 +-+ 2 

7424 

[E N +(v’(k-ki) 0 +a& ] -2 

4 
r(l.f) b (-EN,c2) = 

-ir 

(73) 
;, dDkidDk2[ EN+rv;r;f+u;(i;-i;1)2 I-* 

(36) 

x[ E +&2+a+i;2)2]-1[E 
N 02 0 

(37) 

In the Appendix we evaluate these integrals and their derivatives with 

-2 +2 
respect to k , at k =o. Of course, since we are calculating to 

order E ‘ we do not have to calculate the integrals exactly; we only 

need the terms proportional to 1/e‘ and 1 /e . We find 

4 
_ ir(l> 1) (-EN,$ = -‘OEN 

a 2(8rraJ 
(38) 
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_ a iry> “(-EN, c) = 
- ‘em 

+ 
ak2 r;2=0 

165~; 
+ ln,@- + O(eO) 3 (39) 

_ ir(l’f) 
4rlEN 

b 
(-EN, ;) = 

Wwg’) 
4 

+ln + OkO) > em 

(40) 

2a;rz 6~’ 
_ 22 ir(bl’ ‘)(-EN, Z) 0 = 

ak2 
4 

y,,+ln- 

z2=0 @~a;) EN 

+ O(EO) . (44) 

Y em is the Euler-Mascheroni constant. 

The O(gz) contributions to I? (1,2) are illustrated in Fig. 2. 

After integrating over the two loop energies, all diagrams can be 

expressed in terms of five integrals. These are: 

(42) 

Jf (a, b, c) = dDkidDk2[aEN+2a ici ]-’ [bEN+2a icz I 
-1 

x [ 

J2(a, b, c) = dDkidDk2[ -I [ bEN+2cu ;ir; ] -’ 
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1 aJ,b,b,c) 
= -- 

EN ac 

J3(a,b) = dDkldDk2[aEN+2cr;ct ] -‘[bE +~r~~~+cu*~~ 
N 01 02 

+ ci;(i;,-i;2~21 -I 

(43) 

(44) 

J4(a,b) = J D D +2 -2 
d k*d k2[aEN+2a;kl] .-2 4’2 [bEN+cv ok 1 +cuo k2 

+ q+-2)21 -* 

1 aJ3(a,b) 
= 

-EN aa (45) 

J5(a, b, c) = 
I 

dDk,dDk2[aEN+2a’gc:] -2[bEN+2iu’Ok:2 ] -’ 

X[ CEN+(I’O~:+U~i;~+~~(i;l-~2)2 I -1 

1 J3(a, c)-J3(b, c) 1 = 
aJ3(a. c) 

_- 
2 

EN (b-a) 
2 +b-a aa 

Define 

R= 
(277) 

5(D+1)/2 ’ 

E1 EN Then at the normalization point ci = 0 , E2 = I$= 7 = - 2 , 

(46) 

(47) 
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r(*s2) = 2 [J4(k,s) - J4(l. I)] , (48) a EN 

$92) _ R 
b - 7 J5(+) , (49) 

$4,2) = R (50) c T J5($ A;) a 

$. 2) = 2R 
d EN 

[ J&L;.;) - J,U,1>Ql a (51) 

r(‘, 2, = 2s [ J*(i,$, 1) - J$(l, 1, i)] 
e 

EN 
, (52) 

I!;‘2’ = $J,($,;,+) - J,(+l , (53) 

r(gla2) = $[J (L,A,l) - Ji(l,$+)] 
N 1222 

, (54) 

(1,7-) 2R 
rh 

= F [J&l) - J1(+l , (55) 
N 

rifJ 2)= -4< [ J3(+, 1) - J3(1. 1) - J3(i,$)+J3(fa$-)], (56) 

EN 

$> 2) = R[J2(1.;. 1) +J2($ ;, 1) + J2($ 1, i)l I (57) 
J 

#, 2) 
k = 2s [Ji(l,+.+) - Ji(+)] 

EN 
. (58) 
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The complete vertex function F (1,2) m fifth order is twice the 

(1,2) sum of the above contributions, with the exception of l? j 

is counted once. It is 

, which 

4 
$, 2) 

I 
= 

5th order (2r)(?+1)/2 (8:)4 
[ 
fi + i(26 - 20Yem 

+ 20lnrr - 6ln 3 + 521n 2) + O(e”) 1 . (59) 

The above expressions must be augmented by the lower order 

terms calculated in Ref. 6. The order ri terms in r(‘*‘) are 

-ir(i, 1) (-EN, g2) = EN + ~$2~ + I’(1 -D/ 2) 

(60) 

The order r. and i-i terms in ril* 2, are 

Pt. 

x (1-2 1-D/2 
) . 1 (6i) 

To be consistent with other expressions, we should expand the right 

side of Eq. (60) and the bracket on the right side of Eq. (61) in powers 

of l ) and retain the terms of 0(1/e) and O(e’) only. 

We are now ready to renormalize and calculate the scaling 

exponents . From Eqs. (16) and (18). 
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zbl(ro,u~.EN) = -a~ a i J+l,i)(-EN, iT2=O) . 
N 

‘62) 

From Eqs. (38), (40) and (60) 

z-?g,&). EN) = 1 + a2gi/e + a4gt /e2 

(63) 

The constants a2 and a4 will appear later, and can be read off 

Eq. (63). 

Eqs. (16) and (19) show that 

d’EN)/Z = - d2 a ir(‘* ‘)(-EN,g2) * (64) 
ak 

k’2,O 

We find 

2 4 
a’ (EN) go 80 = - + LY’Z 1 +c2 E c4 -2 

0 E 

2 

13 
+-g- Inn - 13 -jJ Yem ,1 

‘65) 
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Finally, we obtain the renormalized coupling by evaluating 

(66) 

Using Eq. (63) for 2 
-1 andEq. (65) for a’(EN) we obtain, after 

some algebra, 

g(EN) = go [i+$++] , 
which inverts to give 

‘67) 

go = g - $g’ + (3w2-w4)g5/c2 . (68) 

Here, 

1 w=- 

‘W2 

3Yem 
zln2 -slnn+T , ‘69) 

697 
32 

+ 329 149 Tln2-xln3 

+ +l”-$ ye, 
)I 

. (70) 

The EN dependence of all these quantities is hidden in go . We 

use the fact that 

a 
E- gp = _EgP 

NaEN 0 4 0 ’ 
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We obtain, using Eq. (66) and (67) 

PW = E 
WEN) 

N aEN fixed r ,(Y’ 
0 0 

2 4 

3w-;-+ 52 1 go w4go 
(71) 

E 

2 4 
= - 5 g + 2w$ + (4w4-6~‘) ki- 

c2 1 (72) 

(73) 

We next evaluate y by differentiating In z with respect to EN . 

We obtain 

(75) 

= - + f: (-31n 2 - lnrr + ye,) 
I 

-L 

(W2 

g4 
2 . 

(76) 

(74) 
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Finally, we evaluate 5 /a’JEN) by differentiating Ina’ at 
I,,# 

fixed ao’ , r. with respect to E 
N - 

We obtain 

2 
5 - c2 2 c2 c ) 7 -Y - y go + T- c4 g;ie 

= y -zzg2 +($ - c4+wcJg4ic 

1 =- -i+t(-3ln2-lnrr+yem) - 1 g2 
2 

(W2 

1 
4 

~lnZ+$ln3-~~ 
(W4 

. 

(77) 

(78) 

(79) 

Equations (73), (76), and (79) contain the major results. We have 

succeeded in evaluating all of the functions appearing in the renormalization 

group solution for the Green’s functions in perturbation theory. At this 

point we should step back and notice that these functions have lost all 

singularities in E , as they must. Secondly, at this point, the Euler- 

Mascheroni constant ye, occurs in each expression. This will 

eventually cancel out in the final results of the e-expansion, and is 

connected to an invariance of the theory under a resealing of the 

dimensionless coupling g by an arbitrary function of D . We shall 

discuss this point more fully later on. 

Proceeding to the final step of the calculation, we now evaluate 
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the zero g,, of the p(g) function in an e-expansion. That is, we set 

P(g,) = 0 . (80) 

This is solved to O(.s’) by 

2 
81 

2 
--=;+b 
(W2 

em (356 In 2 

-298 In 3 - 23) 1 . (81) 

Inserting this expression into that for y and C/Q’ leads finally 

to 

-l/a*=& +(ifzf[s In 413 +g] . 

(82) 

(83) 

These are the final expressions we obtain. We note that the 

dependence on ye, has cancelled, and that the final expression for the 

O(e’) terms are relatively compact. Unfortunately, they are also rather 

large. At e=2, corresponding to the real world, we obtain 

1 7. 7 
-Y’z+36 = 0. 38 , 

1 3. 5 -&/cz’G 12 + 36 = 0.18 . 

(84) 

(85) 
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Thus, the e-expansion seems at best a rather slowly convergent 

series. One might ask the question at this point of whether there might 

be a sensible alternative procedure to use in obtaining expressions for 

y and S/a’ . 
2 

A quick look at the expression for gi in Eq. (81) shows 

that at E = 2 the O(e’) term is negative, and g: < 0 . Not only that, 

but returning to the expression for p(g) in Eq. (73) one can imagine 

setting E = 2 therein and solving for gi directly. If one does this, 

one finds gf > 0 . In fact, if one now uses this value of gi in the 

expression for y in Eq. (76), one obtains -v= 1/6 to within IO%! 

Unfortunately, this line of reasoning is incorrect. The demonstration 

involves an invariance of the theory under resealing of the dimensionless 

coupling g by an arbitrary function f(e) . Such a resealing does not - 

leave the finite order E perturbative expression for p(g) invariant, --- 
2 

nor does it leave the resultant e-expansion for gi mvariant. However, 

the e-expansions if v and L/Q’ are invariant. To illustrate the point, - 

consider the resealing 

g2 = (84 
2-e/2 2 

G /r(i+e/z) 

= hG2 1 + t (yem-ln8.rr) + O(e2) 
E 1 . 

Defining 

(86) 

(87) 

PG(G) = E * N aEN 

we obtain to O(eG3, G5) 
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(88) 

The equation PG(Gi) = 0 is solved to O(e2) by 

f+E 
is;;=6 

(l:j3 .[788 In 2 - 298 In 3 - 23 1 . (89) 

Now at E = 2 , Gf > 0 , unlike the solution g,” , which was 

negative to O(E’) . Furthermore, setting E = 2 in Eq. (88) results 

in 4 complex roots. We see that our e-expanded p functions evaluated 

at E = 2 provide no insight into the existence or nonexistence of the 

Gell-Mann-Low zero. Since this discussion revolves around changing 

the O(eg3) coefficient of p(g) through transformations like Eq. (87) , 

this ambiguity does not occur in lower order, where p is needed only 

to O(e”g3) and where the existence of the zero with p ’ (g,) > 0 is 

assured. We must assume that our O(e2) expansion of gi does not 

spoil the infrared stability of the theory found in O(E). We cannot 

verify stability within the e-expansion. 

We emphasize that Eqs. (82) and 83) are unchanged by the resealing 

procedure. For better or worse, they are the scaling exponents to 

O(E2) In the above example we obtain to O(E G2, G4) 

1 G2 y=-zG+ -$lnZ+$ln3-: - 1 G4 

@d2 
(90) 
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which becomes Eq. (82) upon insertion of Eq. (89). 
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A PPENDM 

In this appendix we shall calculate the integrals for the self 

energy F (1, 1) 4 m O(g ) (“‘) 
0 

and the vertex function I? in O(g5) 
0 

used in the text. 

We begin with the integral for I? a (l’i) in Eq (36) . . Introducing 

the Feynman parameter x , we get 

-2 dDkldDk2 [EN+2~’ k 
0 1 

-2 + 2,$; (l-x) + a;k - ,,;i;.r;, 

- zcu’g$ ‘z; (1-x)l-3 ) 

Next, we use the following integral 

d%ldDk2(&f + beg + czl-c2 + d + ecci + fcc2)-o 

= (&p ;i D-u r(o-D)(4ab-c ) 2 -D'2/r(0) , 

where 
-2 

;i=d- k 
4ab-c2 

pe2+af2-cef] . 

(Al) 

(A21 

(A3) 

We obtain at 2 = 0 and E = -EN. 
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-ir(l’l) 
a 

1 
-D/ 2 

xdx 1(1-x)(3+x)] , (A4) 
0 

4 D-4 
a -- ir(l, 1) = “krOr(4-D)EN 

aiC2 a 1 2(4ir(uJ 
D 

k2=0 

~~xdx($$),(,_x)(3+x)] -D’2. 

(A5) 

To evaluate the integrals in Eqs. (A4, 5) we integrate by parts using 

the formula 

1 
I 

dx f(x) x 
E/2-2 = ;f ‘(0) + f’(0) - f(l) 

0 

f”(x)lnx dx + O(E) 
0 

Letting x + 1 - x in formula (A4) we have 

f(x) = (1-x)(4-x) E/2-2 

Using the formulae 

1 
In x dx 

0 (4-x)3 
= &(ln 3/4 - +) , 

1 
In x dx 

0 (4-x)4 
=&[ln3/4 -+--&I , 

and expanding everything to O(c’) we obtain 

L46) 

(A7) 

(-48) 

_ ir(l>i) 
a I iF=o (A9) 
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which is Eq. (38). 

(i,l) To obtain the ? derivative of ra we again use Eq. (A6) 

with 

f(x) = (4-x)E’2-‘-5(4-x)E’2-2+6(4-x)“2-3 , (AfO) 

and 

1 
In x dx 1 =- 

o ~4-x)~ 6144 C 
6 In 314 - ‘g 1 . (All) 

This then leads eventually to Eq. (39). 

The other self energy graph in 4th order is rb (see Eq. 37). 

For this graph we must introduce two Feynman parameters x and y . 

We obtain after using Eq. (A2), 

-ir(l*f) = _ 
b 

2 -D/2 
dy [3-~(x+Y)+Y) I 

XE f C (Y ;:2(1-x2-y2) 
D-3 

N 3-2(x+y)-(x-y)2 1 . 
We set 

u+v u-v 
x=- ,y=- . 2 2 

L412) 

(A13) 
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To evaluate the integral at ‘;t2 = 0 we integrate by parts using 

1 
2 C/2-2 du [3-2u-v ] 

Y 

2 e/2-1 - (3-2~~ ) 1 (A44) 

Setting v = I-w and using the formula 

1 
f(Ww E/2-1 

0 
f’(w) In wdw + O(E) , (A45) 

with 

f(w) = (2-w) E/2-1- (4-w)E/2-l 
(A46) 

then allows us to obtain r(l*l) 
b to O(eO) as inEq. (40). 

d The integral for -- ir(l.l) 

dc2 b 
IS the same as Eq. (A12) with an 

additional factor from differentiating. This becomes after changing 

variables and integrating by parts, 

-2 ir(l, 1) 
aZ2 b t E 

a, r4ED-4 

k2=.o 
00 N r(4-D)/(4TnY;)D~ -1 1 

=j; dvJ;du(l-$ - G)[3-2u-v2]E’2-3 , 
(A17) 

=I 

1 
dv(l-v) e/2-1 

o 8(1-~/2)(1-e/4) 
C 
(2-;)(~+V)E’2-1-(2-e)(i+v)(3+y)F’2-2 
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- v(3+v) 
e/2-1 1 1 

16(1-e/2)(1+/4) 
11 dvln(g) . (A18) 

After some algebra, we obtain Eq. (41) in the text. 

We see by Eqs. (42)-(46) that we need only evaluate the integrals 

J1 
and J 3 . For J1 we use Eq. (A2) after introducing 

parameters x and y . We obtain 

D 
Ji(a,b, c) = -$ 0 D-3 

r(3-D)EN Ii(a, b, c) , 
0 

(A49) 

where 

-X D-3 
D/2 ’ (A201 

J3 is obtained similarly, except that only one Feynman parameter 

is needed. We get 

where 

D-2 r(2-D)EN 13(a,W . 

1 13(a,b) = dx [a+x(b-a)] D-2 

0 X 
W(4-x)D/2 ’ 

L421) 

(A=) 

We now outline the procedure used in evaluating If and I3 . 

We begin with I1 . We define 
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a+b 

a-b 
p=, . 

and change to u, v variables (Ai3). We get 

I1 = I;(a,P.C) + I;(a,p,C) I 

(A23) 

(~24) 

where 1 E 

I;(,, p, c) = ; 
---2 

du [C+CYU+~V] *-‘(~-ZU-V~)~ , (A25) 
v 

and 

I&P, c, = I&. -p. c) . (A261 

Now the singularities in E in Eq. (A30) come from the vanishing 

of the second term in the integrand at u = v = 1 . Integrating by parts 

several times yields + 1 
I.I(~~P~~) = 4(1-e/2) 

+; (I-E) 
C 
h-e upc(-l+wE’2)-k;;c(-l+ze’2 (A27) 

h 
ffpc 

and k 
@PC 

are equal to (c+cu+pv) and (c+av+pv), respectively. 

w and z are (I-v2) and (3-2v-v’), respectively. 

We next expand in E and extract the singularities in E by 

integrating the v integrals by parts, using 
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1 
dv f(v)(l-v) e/2-1 

0 
= g f(l) + 

1 
dvf ‘(v)ln(l-v)+ O(E) . (A28) 

0 

After some algebra, we obtain 

a+b Il(a,b,c) = 8E + 

+:ln$-$(alna+blnb) +0(e) . 

Using Eq. (A24) we finally get Jl(a,b,c) 

(A29) 

Jl(a,b,c) = -E N(f$${y + $ [,,+b)(3-hem 

+2ln- 
4nEN 

+ 3 In 3) + 4 c In 4/3 

- 2(a In a + b In b) 11 + O(EO) . (A30) 

Next we turn to the evaluation of the integral 13(a,b) in Eq. (A22). 

The singularities in I3 came from the factor x e/2-2 near x = 0 . 

We integrate by parts using Eq. (A6) with 

f(x) = [a + x(b-a)] 2-E(4-x)E/2-2 . 
(A3t) 

We also use Eq. (A8). After some algebra we get 
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ab -1 + 4 1 - 
+-T In -In 2 

2 3a > . (A32) 

Using Eq. (A21) we then obtain J3(a,b) as 

J3(a,b) = Ei E (J{L&-$) +$(g?-2$) 

X 
+ In rrE 

zL)+C -ql +~) 

+$(I -lng)]}+O(.z’) . (A33) 

This completes our evaluation of the needed integrals J1 and 

J3 . J2 > J4 and J5 are then obtained by Eqs. (43), (45), and (46). 
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Fig. 1 

Fig. 2 

FIGURE CAPTIONS 

The contributions to the unrenormalized self energy 

p, 1). In O(gt L 

The O(gz) contributions :z the unrenormalized 

vertex !?(” ‘I. 
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